Quantitying the impact of tropospheric ozone on crop productivity using JULES-Crop

Felix Leung 1,2 ; Supervisors: Stephen Stich 1, Andrew Wiltshire 2, Jemma Gornall 2, Gerd Folberth 2, Lisa Ainsworth

1University of Exeter, Streatham Campus, Exeter, Devon, EX4 4RU, UK 2Met Office Hadley Centre, FitzRoy Road, Exeter, Devon, EX1 3PB, UK

Abstract

Tropospheric ozone (O_3) is the third most important anthropogenic greenhouse gas. It is harmful to animals and detrimental to plant productivity and it causes significant crop production losses. Currently O_3 concentrations are projected to increase globally, which could have a significant impact on agriculture and food security. The Joint UK Land Environment Simulator modified to include crops (JULES-crop) is used here to quantify the impacts of present-day and future tropospheric O_3 on crop production at the regional scale until 2050.

Ozone precursors	Natural and anthropogenic sources
Nitrogen Oxide (NOx) | NOx are the most important and common precursor
Methane (CH4) | Biomass burning and forest clearing
Carbon monoxide (CO) | Paints and coatings, benzene (tobacco smoke, fuels etc.), CFCs (refrigerants)
Volatile Organic Compounds (VOCs) | Some plants emit BVOC during growing season. Some biomass plantations contributed a lot of BVOC emissions.
Biogenic VOC (BVOC) e.g. isoprene |

Background

Majority of tropospheric ozone is found on the land surface. It is:

- A reactive secondary pollutant formed by the photoreaction of ozone precursors.
- Harmful to animals and plants as it creates reactive oxygen species that damage cell membrane and protein structure.
- Concentrated in rural area because NOx production from vehicles in urban regions would destroy O3.

JULES Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Tuned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top leaf nitrogen concentration</td>
<td>0.073</td>
<td>0.13</td>
</tr>
<tr>
<td>Scale factor of top leaf nitrogen to Vcmax (quantum efficiency)</td>
<td>0.0008</td>
<td>0.001</td>
</tr>
<tr>
<td>Ratio of root N to leaf N</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Ratio of stem N to leaf N</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Fractional reduction of photosynthesis by O3 (sensitivity)</td>
<td>1.40</td>
<td>0.825</td>
</tr>
<tr>
<td>Threshold of ozone flux</td>
<td>5.0</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Methods

- The soybean parameters are tuned and calibrated from literature and SoyFACE results
- $A = A_0 \times f$

 \[UD_O3\text{crit}\text{max}((F_{OA}-F_{O3\text{crit}}), 0.0) \]

Results

The global historical trend of ozone and CO2 impact on maize, wheat, soybean and rice yield between 1961-2005 compares with detrended observed yield from FAO statistic.