Effects of Ozone-CO$_2$-Induced Vegetation Changes on Global Air Quality

Amos P. K. Tai
Assistant Professor
Earth System Science Programme
Faculty of Science, CUHK
5th iLEAPS Science Conference 2017
Plant-Atmosphere Interactions

Stoma

O₃, SO₂, NOₓ

water travels up through trunk

water in soil

stomatal pore

CO₂

light

H₂O

glucose (C₆H₁₂O₆)
Plant-Atmosphere Interactions

Lower albedo: absorbs more shortwave radiation than bare land

Photosynthesis: absorbs atmospheric CO₂

Transpiration: transfers water and latent heat to atmosphere, cooling surface and shaping boundary-layer dynamics

O₃, SO₂, NOₓ
Plant-Atmosphere Interactions

Lower albedo: absorbs more shortwave radiation than bare land

Photosynthesis: absorbs atmospheric CO₂

Dry deposition: absorbs air pollutants, e.g., O₃, SO₂, NOₓ

Transpiration: transfers water and latent heat to atmosphere, cooling surface and shaping boundary-layer dynamics

Biogenic emissions: releases volatile organic compounds (VOCs) that are precursors for ozone and aerosol particles

O₃, SO₂, NOₓ
Vegetation Change Affects Air Quality and Climate

2000-2050 change in **cropland fraction** following IPCC A1B

Asynchronously coupled climate-biosphere-chemistry models

2000-2050 changes in summertime **surface ozone** (ppbv)

[Tai et al., GRL, 2013]
Vegetation Change Affects Air Quality and Climate

2000-2050 change in cropland fraction following IPCC A1B

Asynchronously coupled climate-biosphere-chemistry models

2000-2050 changes in summertime surface ozone (ppbv)

[Tai et al., GRL, 2013]

- Many land use and land cover change studies only consider changes in:
 - Land/plant type distribution (category, fractional coverage) → most...
 - Vegetation structure (LAI, canopy height) → some...

[Image 35x305 to 374x431]
[Image 35x-88 to 539x290]
Vegetation Change Affects Air Quality and Climate

- Many land use and land cover change studies only consider changes in:
 - Land/plant type distribution (category, fractional coverage) → most...
 - Vegetation structure (LAI, canopy height) → some...

- Most do not consider simultaneous changes in plant physiology under varying atmospheric conditions...

2000-2050 change in cropland fraction following IPCC A1B

Asynchronously coupled climate-biosphere-chemistry models

2000-2050 changes in summertime surface ozone (ppbv)

[Tai et al., GRL, 2013]
Rising CO\(_2\) and ozone pollution can both modify plant physiology, leading to changes in plant activities that can ultimately affect climate and atmospheric chemistry via transpiration, biogenic emissions, dry deposition, etc.
Rising CO$_2$ and ozone pollution can both modify plant physiology, leading to changes in plant activities that can ultimately affect climate and atmospheric chemistry via transpiration, biogenic emissions, dry deposition, etc.

CO$_2$:
- Inhibits isoprene emission
- Enhances LAI (fertilization)
- Reduces stomatal conductance (to prevent water loss)
Effects of Ozone-CO\textsubscript{2}-Vegetation Coupling

Rising CO\textsubscript{2} and ozone pollution can both modify plant physiology, leading to changes in plant activities that can ultimately affect climate and atmospheric chemistry via transpiration, biogenic emissions, dry deposition, etc.

CO\textsubscript{2}:
- Inhibits isoprene emission
- Enhances LAI (fertilization)
- Reduces stomatal conductance (to prevent water loss)

O\textsubscript{3}:
- Reduces LAI (damage)
- Reduces stomatal conductance (damage)
In GEOS-Chem chemical transport model, we implemented:
In GEOS-Chem chemical transport model, we implemented:

1. **CO₂ inhibition of isoprene emission**

![Graph showing normalized isoprene emission vs. CO₂ concentration (ppmv)].

[Possell & Hewitt 2011]
Adding CO$_2$ Effects to Atmospheric Chemistry Model

In GEOS-Chem chemical transport model, we implemented:

1. CO$_2$ inhibition of isoprene emission

 ![Graph showing CO$_2$ concentration vs. normalized isoprene emission]

 [Possell & Hewitt 2011]

 - Present-day level
 - 2050 level

2. Relative LAI enhancement from CO$_2$ fertilization

 CLM4.5-BGC-simulated LAI changes under 2000-2050 transient CO$_2$
In GEOS-Chem chemical transport model, we implemented:

1. **CO$_2$ inhibition of isoprene emission**

2. **Relative LAI enhancement from CO$_2$ fertilization**

 CLM4.5-BGC-simulated LAI changes under 2000-2050 transient CO$_2$

3. **Relative stomatal conductance (g_s) as a function of ambient CO$_2$ concentration (c_a)**
1. Examine ozone changes due to RCP4.5 and RCP8.5 land use change
2. Examine additional effects of elevated CO$_2$ on top of land use change

[Wong et al., in prep]
Effects of Elevated CO$_2$ in 2050 on Surface Ozone

1. Examine ozone changes due to RCP4.5 and RCP8.5 land use change
2. Examine additional effects of elevated CO$_2$ on top of land use change

Additional effects of 2050 RCP8.5 CO$_2$ (525 ppm) on surface ozone

- **Isoprene inhibition**: $E_{\text{isop}} \downarrow 30\%$
- **CO$_2$ fertilization**: LAI $\uparrow 10\%$
- **Stomatal conductance**: $g_s \downarrow 30\%$
- **Combined effect**

[Wong et al., in prep]
We previously found (using CESM) that ozone damage on stomata can induce a strong positive feedback (of up to +6 ppbv) due to:

- Reduced dry deposition
- Increased isoprene emission due to transpiration-induced increase in vegetation temperature
Effects of Ozone-Vegetation Coupling on Air Quality

- We previously found (using CESM) that ozone damage on stomata can induce a strong positive feedback (of up to +6 ppbv) due to:
 - Reduced dry deposition
 - Increased isoprene emission due to transpiration-induced increase in vegetation temperature

Complication and caveats:
- LAI simulation in CLM4 is poor…
- Hydrometeorological feedbacks tend to mask important processes…
- Vegetation temperature calculation may be poorly constrained…

[Sadiq et al., ACP, 2017]
1. Implement Lombardozzi et al. [2015] ozone damage scheme in CLM4.5-BGC

2. Run CLM at different $[O_3]$ levels until quasi-steady state

3. Parameterize simulated relationship between $[O_3]$ and LAI (L) for each grid cell, month and PFT:

$$\gamma = \frac{L}{L_0} = \gamma_\infty + (1 - \gamma_\infty) e^{-k[O_3]}$$

[Zhou et al., in prep]
1. Implement Lombardozzi et al. [2015] ozone damage scheme in CLM4.5-BGC

2. Run CLM at different [O$_3$] levels until quasi-steady state

3. Parameterize simulated relationship between [O$_3$] and LAI (L) for each grid cell, month and PFT:

$$\gamma = \frac{L}{L_0} = \gamma_\infty + (1 - \gamma_\infty) e^{-k[O_3]}$$

4. Derive potential (intact) LAI unaffected by O$_3$:

$$\text{potential LAI} = \frac{\text{MODIS LAI}}{\gamma(\text{simulated } [O_3])}$$

[Zhou et al., in prep]
1. Implement Lombardozzi et al. [2015] ozone damage scheme in CLM4.5-BGC
2. Run CLM at different \([O_3]\) levels until quasi-steady state
3. Parameterize simulated relationship between \([O_3]\) and LAI \((L)\) for each grid cell, month and PFT:
 \[
 \gamma = \frac{L}{L_0} = \gamma_\infty + (1 - \gamma_\infty) e^{-k[O_3]}
 \]
4. Derive potential (intact) LAI unaffected by \(O_3\):
 \[
 \text{potential LAI} = \frac{\text{MODIS LAI}}{\gamma(\text{simulated } [O_3])}
 \]
5. Apply \(\gamma\) as a function of mean \([O_3]\) of previous month to potential LAI at beginning of each month of GEOS-Chem simulation → dynamic \(O_3\)-LAI coupling on monthly timescale
Effects of O_3-LAI Coupling on Simulated Ozone

O_3-affected LAI – intact LAI

Resulting changes in $[O_3]$ (ppb)
Effects of O₃-LAI Coupling on Simulated Ozone

Positive feedback of up to +3 ppbv overall:

- Dry deposition ↓ (5-20%) → [O₃] ↑
- Isoprene emission ↓ (5-20%) → [O₃] ↓
- Deposition effect dominates in most regions
- In low-LAI regions, PAN transport ↓ → [O₃] ↓
Effects of O_3-LAI Coupling on Simulated Ozone

Positive feedback of up to +3 ppbv overall:
- Dry deposition ↓ (5-20%) → $[O_3]$ ↑
- Isoprene emission ↓ (5-20%) → $[O_3]$ ↓
- Deposition effect dominates in most regions
- In low-LAI regions, PAN transport ↓ → $[O_3]$ ↓

Ozone feedback factor (f):

$$
\Delta [O_3]_{\text{total}} = \frac{\Delta [O_3]_{\text{anthropogenic}}}{1 - f}
$$

$$
f \approx 0.1 - 0.6$$
Conclusions and Future Work

Conclusions:

- Elevated CO$_2$ suppresses isoprene emission and stomatal conductance, leading to compensating effects on surface ozone.
- Combined effect of 525 ppm CO$_2$ is in the range of -1 to $+4$ ppb.
- O$_3$-induced damage on LAI leads to an ozone feedback of -1 to $+3$ ppb, and reflects compensating effects of reduced dry deposition and isoprene emission.

- **Physiological responses of plants to atmospheric changes are important for atmospheric chemistry.**

Ongoing and future work:

- Biospheric component in GEOS-Chem to fully capture CO$_2$, O$_3$ and climatic effects on photosynthesis and stomatal conductance.
- **Terrestrial Ecosystem Model in R (TEMIR) v1.0** driven by MERRA2 or GEOS-FP surface fluxes and met fields: