Convener: Pawel Misztal
Co-conveners: Thomas Karl , B. Langford , Janne Rinne
Volatile Organic Compounds (VOCs) in the atmosphere are globally dominated by a number of primary emission sources. These include biogenic sources (e.g. emissions from plants, flowers) or microbial VOCs (mVOCs), as well as anthropogenic and pyrogenic emissions. Once in the atmosphere, VOCs are oxidized and serve as precursors of secondary organic aerosol.
They also contribute to the formation of tropospheric ozone, and can affect atmospheric oxidants. Mechanistic understanding of chemical pathways and surface-atmosphere exchange in rural and urban environments requires synergy between measurements at different spatiotemporal scales including laboratory oxidation experiments, embracing the broad diversity of VOC sources in the atmosphere. From a direct health perspective the largest human exposure to VOCs is likely not outdoors but in the indoor atmosphere.
The use of solvents and consumer-care products by humans have also emerged as a prominent source of outdoor atmospheric VOCs. Extension of the range of VOCs measured in urban environments reveal large contributions of longer-chain semivolatile VOCs, and recent measurement technologies for extremely low volatility compounds (ELVOC) have bridged the gas-aerosol phase continuum.
We encourage a wide range of submissions of contributions based on in-situ measurements of VOCs at different scales, outdoors and indoors, flux measurements of emission and deposition processes, satellite observations, laboratory experiments and modeling.